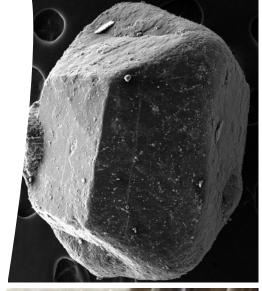


Ottava Conferenza Nazionale SECEM

Batterie termiche con materiali a PCM, caratteristiche e vantaggi.


Esempi pratici al servizio degli operatori

Rimini 09 – 10 Maggio 2023

Cosa Facciamo

Progettiamo e realizziamo batterie di accumulo termico con materiale a cambio di fase per un uso piu' efficiente dell'energia, in linea con la transizione energetica in atto e con gli obiettivi sfidanti di riduzione delle emissioni di CO₂

LA BATTERIA TERMICA

L'innovazione i-TES

L'evoluzione dei boiler tradizionali per un futuro più green

Accumulo termico distribuito

utilizzo in prossimità del punto d'uso, minore inerzia termica e riduzione degli sprechi; integrazione con impianti rinnovabili e ad alta efficienza

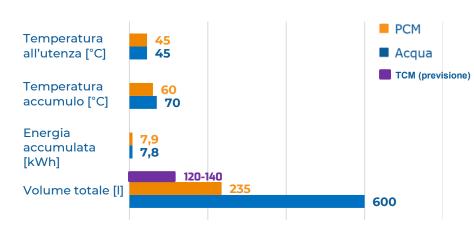
Riduzione volumi di accumulo

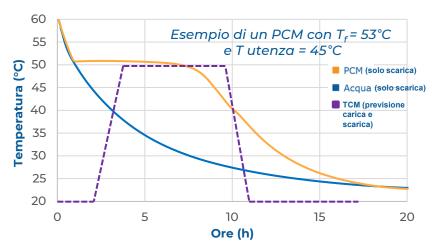
batteria a PCM è almeno 2/3 rispetto all'accumulo ad acqua; batteria a TCM è almeno 1/2 rispetto all'accumulo ad acqua

Accumulo ad acqua

Batteria a PCM

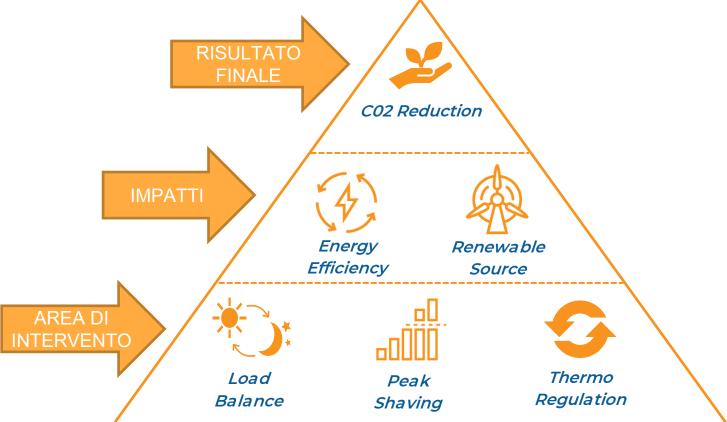
Batteria a TCM


Differenti taglie di accumulo (kWh)


flessibilità, modularità e semplicità di installazione ed uso tipo LEGO

Confronto con accumulo tradizionale

Il PCM riesce a mantenere la temperatura del suo punto di fusione per lunghi periodi, caratteristica vantaggiosa rispetto agli accumuli ad acqua, i quali presentano un comportamento di diminuzione costante della temperatura fino al raggiungimento dell'equilibrio con quella ambientale.

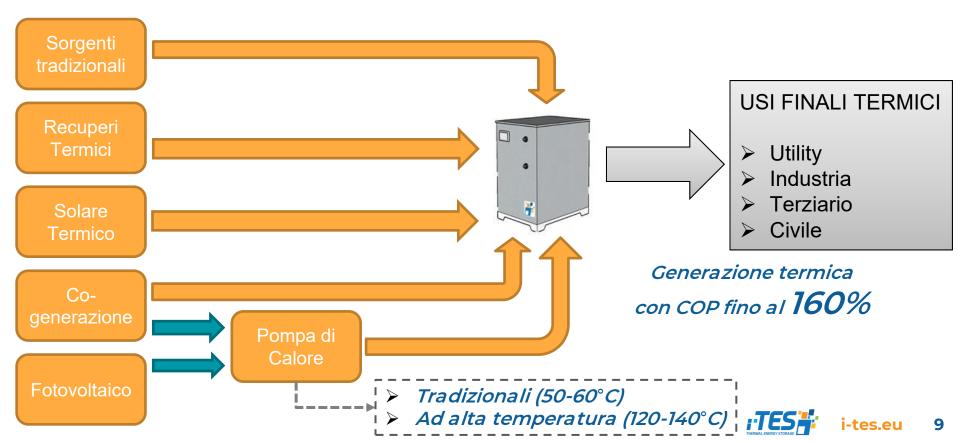


Il TCM è caratterizzato da densità energetiche superiori alle precedenti e da costi di acquisto (previsti) del dispositivo inferiori.

Inoltre ha la caratteristica di non disperdere calore nel tempo, permettendo un accumulo nel lungo periodo (stagionale) e di fornire calore quando serve secondo una modalità on/off.

I vantaggi della batteria termica

LE APPLICAZIONI


Le applicazioni

- Teleriscaldamento
- Pompa di calore
- Cogeneratore
- Recupero termico
- Solare termico
- Caldaia a condensazione
- Caldaia a biomassa
- Fotovoltaico
- Pinch Analysis

N A N E

_ Integrazione delle fonti

e sale CED

Referenze (interventi realizzati)

Merer en 2e (interventi readizzati)						
SETTORE CLIENTE	ATTIVITA'	RISULTATI/BENEFICI				
Multiutility, PA, Industriale	Installazione batteria termica da 40 kWh presso sottostazione di teleriscaldamento in palazzina residenziale	Riduzione del picco termico di prelievo del mattino (-80%) con aumento della capacità d'uso e risoluzione dei gap del circuito				
Industriale, Centrali di Generazione termoelettrica	Gestione progetto europeo e installazione di una batteria termica da 300 kWh abbinata ad una pompa di calore da 300 kW					
Azienda stampaggio a caldo	Fornitura ed installazione di n.1 batteria termica da 50 kWh comprensivo di sistema di recupero di calore aria/acqua per riscaldamento ambienti e ACS	Conferma dei risultati ottenuti con un efficienza di carica e scarica della batteria compresa 85-90%				
Distribuzione gas	Applicazione di un sistema complesso di generazione del calore (80 kW _t e 80 kWh _t), presso una cabina di distribuzione per aumentare l'efficienza energetica e l'uso delle fonti rinnovabili	Basse potenze termiche installate che coprono il baseload dei consumi con elevate flessibilità d'utilizzo ed elevato numero di ore di funzionamento. Efficienze di generazione e distribuzione raggiunte del 150%.				
Operatori telecomunicazioni	Batteria termica da 25 kWh combinata con un'UTA presso uno shelter TLC per	Eliminazione dei condizionatori tradizionali, con eliminazione dei costi di energetici, di manutenzione e la riduzione della quantità				

ed

degli f-gas.

potenziamento del freecooling

eliminazione di condizionatori tradizionali

manutenzione e la riduzione della quantità

SPUNTI PER LE VALUTAZIONI TECNICO/ECONOMICHE E LA PROGETTAZIONE

Criteri base per valutazione tecnico-economica

VINCOLI E/O ELEMENTI DI VALUTAZIONE

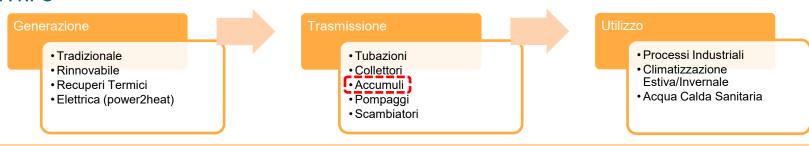
- Le potenze vanno considerate sia per la fase di carica che in quella di scarica
- Spazi a disposizione, sia per l'accesso che per il posizionamento finale
- Numeri di cicli di carica e scarica nelle 24 ore e nei giorni durante l'anno
- Costi operativi
- Incentivi

Potenza Termica [kW]

Miglior configurazione costi/benefici

Maggiori costi per cui i benefici devono essere elevati

Basse performance richieste


Costi elevati, affrontabili con tecnologie meno performanti

Energia Termica [kWh]

Valutazione applicazione Batteria Termica a PCM

SCHEMA TIPO

ELEMENTI IN INPUT

Lato Generazione

- Condizioni climatiche
- Disponibilità fonti energetiche
- Capacità generazione
- Efficienza

Lato Utilizzatore

- Fabbisogni reali vs progetto
- Contemporaneità
- Livello Termico
- Integrazione fonti

INFORMAZIONI NECESSARIE PER VALUTAZIONE INTERVENTO

- Schema di impianto (P&Id)
- Layout
- Datasheet macchinari

- Costo energia (termico/elettrico)
- Profilo di consumo (minuto, 15 minuti, orario, giornaliero)

Caratteristiche tipo di una batteria termica

Temperature cambio di fase, range 15 – 74°C

Calore latente 210 – 290 kJ/kg

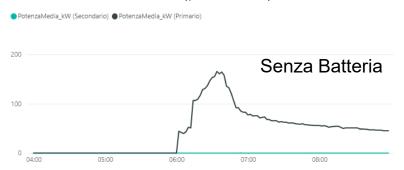
Densità energetica della batteria 50 – 60 kWh/m³

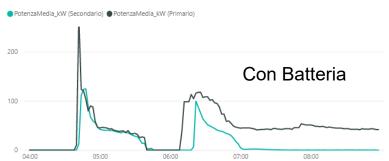
Fluido termovettore acqua calda, acqua surriscaldata

Tipo di costruzione 2 o 4 tubi

Resistenza elettrica da 1 a 5 kW

Taglie tipo 10 - 20 - 50 kWh




CASI STUDIO

Caso studio: taglio del picco di potenza termica

APPLICAZIONE REALIZZATA: batteria installata presso una sottostazione di teleriscaldamento presso un'utenza residenziale (palazzina)

Esperienza e risultati replicabili per utenze tipo: Ospedali, Centri sportivi, Grandi aziende, Comunità Energetiche

Benefici:

- Stabilizzazione della produzione/uso (controllo di processo
- Riduzione della potenza di generazione
- Aumento della capacità di utenze asservibili

- Integrazione con fonti di generazione rinnovabile e pompe di calore
- Gestione/risoluzione fuori specifica su reti periferiche
- Riduzione dell'effetto «treni freddi»

Caso studio: sistema di generazione integrata

Generatore termico combinato - CHP+HP+TES

DATI REALI + IPOTESI

Potenza Termica proposta 2,8 MW

Accumulo Termico proposta 2 MWh

Consumo Energia Termica ex-ante 24,5 GWh/anno

ca. 6.000 Ore lavoro nuovo sistema

Copertura fabbisogno con sistema nuovo 90%

10,4 GWh/anno Energia Termica risparmiata

Riduzione CO₂ prevista

 $2.100 t_{CO2}$ /anno

17,6 GWh/anno

3.500.000					
3.000.000	_				
2.500.000		_			
2.000.000					
1.500.000			_		
1.000.000					
500.000					

		6175	h	
	Cogonoratoro	800	kWe	
	Cogeneratore	856	kW _t	
		100%	Quota elettrico	
	Pompe di Calore	800	kWe	
		2,5	< COP	
		2.000	kW _t	
	Produzione termica	17.635.800	kWh _t	
	Consumo metano	1.217.093	Smc	150%
	Consumo metano	11.664.575	kWh _t	
	% Copertura	Consumo	Efficienza	Fabbisogno
Totale	100%	24.495.916	80%	19.596.733
Non coperto	10%	2.449.592	80%	1.959.673
Coperto	90%	22.046.325	80%	17.637.060

Produzione Energia Termica (proposta)

i-TES Srl

Sede legale

Corso V. Emanuele II, 44 – 10123 Torino

Sede operativa

Via G. Quarello, 15/A – 10135 Torino

C.F. & P. IVA 11628790013

+39 011.6706352

info@i-tes.eu

i-tes.eu

